首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253666篇
  免费   27323篇
  国内免费   14852篇
电工技术   21366篇
技术理论   11篇
综合类   27077篇
化学工业   24702篇
金属工艺   14484篇
机械仪表   24370篇
建筑科学   26100篇
矿业工程   11601篇
能源动力   12978篇
轻工业   13833篇
水利工程   10967篇
石油天然气   13219篇
武器工业   5020篇
无线电   16706篇
一般工业技术   23457篇
冶金工业   8998篇
原子能技术   3855篇
自动化技术   37097篇
  2024年   497篇
  2023年   3092篇
  2022年   6246篇
  2021年   7590篇
  2020年   7930篇
  2019年   6424篇
  2018年   6344篇
  2017年   8065篇
  2016年   9827篇
  2015年   10565篇
  2014年   16694篇
  2013年   16553篇
  2012年   19842篇
  2011年   21758篇
  2010年   15683篇
  2009年   15860篇
  2008年   14847篇
  2007年   18059篇
  2006年   15623篇
  2005年   12916篇
  2004年   10934篇
  2003年   9011篇
  2002年   7275篇
  2001年   5969篇
  2000年   4854篇
  1999年   3970篇
  1998年   3324篇
  1997年   2717篇
  1996年   2338篇
  1995年   1965篇
  1994年   1729篇
  1993年   1251篇
  1992年   1124篇
  1991年   843篇
  1990年   699篇
  1989年   596篇
  1988年   481篇
  1987年   305篇
  1986年   287篇
  1985年   239篇
  1984年   283篇
  1983年   260篇
  1982年   218篇
  1981年   108篇
  1980年   108篇
  1979年   80篇
  1978年   57篇
  1977年   51篇
  1976年   48篇
  1959年   50篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
《Journal of dairy science》2019,102(11):10186-10201
Metabolic status of dairy cows in early lactation can be evaluated using the concentrations of plasma β-hydroxybutyrate (BHB), free fatty acids (FFA), glucose, insulin, and insulin-like growth factor 1 (IGF-1). These plasma metabolites and metabolic hormones, however, are difficult to measure on farm. Instead, easily obtained on-farm cow data, such as milk production traits, have the potential to predict metabolic status. Here we aimed (1) to investigate whether metabolic status of individual cows in early lactation could be clustered based on their plasma values and (2) to evaluate machine learning algorithms to predict metabolic status using on-farm cow data. Through lactation wk 1 to 7, plasma metabolites and metabolic hormones of 334 cows were measured weekly and used to cluster each cow into 1 of 3 clusters per week. The cluster with the greatest plasma BHB and FFA and the lowest plasma glucose, insulin, and IGF-1 was defined as poor metabolic status; the cluster with the lowest plasma BHB and FFA and the greatest plasma glucose, insulin, and IGF-1 was defined as good metabolic status; and the intermediate cluster was defined as average metabolic status. Most dairy cows were classified as having average or good metabolic status, and a limited number of cows had poor metabolic status (10–50 cows per lactation week). On-farm cow data, including dry period length, parity, milk production traits, and body weight, were used to predict good or average metabolic status with 8 machine learning algorithms. Random Forest (error rate ranging from 12.4 to 22.6%) and Support Vector Machine (SVM; error rate ranging from 12.4 to 20.9%) were the top 2 best-performing algorithms to predict metabolic status using on-farm cow data. Random Forest had a higher sensitivity (range: 67.8–82.9% during wk 1 to 7) and negative predictive value (range: 89.5–93.8%) but lower specificity (range: 76.7–88.5%) and positive predictive value (range: 58.1–78.4%) than SVM. In Random Forest, milk yield, fat yield, protein percentage, and lactose yield had important roles in prediction, but their rank of importance differed across lactation weeks. In conclusion, dairy cows could be clustered for metabolic status based on plasma metabolites and metabolic hormones. Moreover, on-farm cow data can predict cows in good or average metabolic status, with Random Forest and SVM performing best of all algorithms.  相似文献   
992.
993.
A novel heat pump and power generation integration system (HPPGIS) using solar energy as a low temperature heat source was presented in this study. This system could be operated in both an organic Rankine cycle power generation (ORC‐PG) mode and a reverse Carnot cycle heat pump (RCC‐HP) mode. Compared with a single heat pump and power generation system, this system improved the utilization efficiency of solar energy, thus showing potential for the generation of economic benefits. Contrastive analyses of different working fluids using ORC‐PG and RCC‐HP systems were conducted first, leading to the selection of R142b and R245fa as optimal fluids. Then, an experimental investigation of the system was carried out under different conditions. A heat pump and ORC system model was proposed and validated by comparing experimental and simulated values. The experimental results indicated that the HPPGIS had good feasibility and stability in both modes. In the ORC‐PG mode, HPPGIS had a power output of 1.29 kW and a thermal efficiency of 4.71% when the water inlet temperature of the evaporator was 90.03°C. In the RCC‐HP mode, HPPGIS had a COP of 3.16 and a heat capacity of 33.24 kW when the water outlet temperature of the condenser was 106.23°C.  相似文献   
994.
Carbon dioxide capture, utilization, and storage (CCUS) is one of the promising negative emission technologies (NET). Within various CCUS routes available, CO2 conversion into fuels is one of the attractive options. Currently, most of CO2 conversion into fuels requires hydrogen, which is expensive and consume large energy to produce. Hence, a different route of producing fuel from CO2 by utilizing 1,4‐butanediol as the raw material is proposed and evaluated in this study. This alternative route comprises production of levulinic acid from the reaction between CO2 and 1,4‐butanediol and production of ethyl levulinate, an alternative biofuel and biofuel additive, via an esterification reaction of levulinic acid with ethanol. The process is designed and simulated according to the available data and evaluated in terms of its technical features. Because of the unavailability of reaction data for synthesis of levulinic acid from 1,4‐butanediol and CO2, several assumptions were taken, which may implicate the accuracy of the studied design. This technical evaluation is followed by cost estimations and sensitivity analysis. Because of the free CO2, the profitability of the plant depends strongly on the prices of the other chemicals and the price difference between 1,4‐butanediol (raw material) and ethyl levulinate (product). Monte Carlo simulation indicates that the proposed plant will always be profitable if the ethyl levulinate is slightly more expensive than the 1,4‐butanediol, highlighting that the process of producing ethyl levulinate from CO2 is economically profitable. Future research should be directed towards a catalytic system that can effectively convert CO2 into levulinic acid, by‐products produced from the two reaction steps, and reduce the excess ethanol used in the second reaction.  相似文献   
995.
A low‐carbon electricity supply for Australia was simulated, and the installed capacity of the electrical grid was optimized by shifting the electricity demand of residential electric water heaters (EWHs). The load‐shifting potential of Australia was estimated for each hour of the simulation period using a nationwide aggregate EWH load model on a 90 × 110 raster grid. The electricity demand of water heaters was shifted from periods of low renewable resource and high demand to periods of high renewable resource and low demand, enabling us to effectively reduce the installed capacity requirements of a 100%‐renewable electricity grid. It was found that by shifting the EWH load by just 1 hour, the electricity demand of Australia could be met using purely renewable electricity at an installed capacity of 145 GW with a capacity factor of 30%, an electricity spillage of 20%, and a generation cost of 15.2 ¢/kWh. A breakdown of the primary energy sources used in our scenario is as follows: 43% wind, 29% concentrated solar thermal power, and 20% utility photovoltaic. Sensitivity analysis suggested that further reduction in installed capacity is possible by increasing the load‐shifting duration as well as the volume and insulation level of the EWH tank.  相似文献   
996.
This paper presents seasonal‐energy storage of solar energy for the heating of buildings. We distinguish several types of seasonal storage, such as latent, sensible, and chemical storage, among which the thermochemical storage is used and analysed in this research. In the first part, a laboratory heat‐storage tank, which was made in the laboratory for heating, sanitary, and solar technology and air conditioning from the Faculty of Mechanical Engineering, University of Ljubljana, Slovenia, was presented. The experimental model was tested for charging and discharging mode. Two types of numerical models for sorption thermal‐energy storage exist, which are microscale and macroscale (integral). For microscale analysis, the analysis system (ANSYS) model can be used to simulate the behaviour in the adsorption reactor. On macroscale or integral scale, TRaNsient SYStem (TRNSYS) model was used to perform the operation of the storages on the yearly basis. In the second part the simulation of the underfloor heating system operation with a built‐in storage tank was carried out for two locations, Ljubljana and Portoro?. Furthermore, the comparison between a thermochemical and sensible‐heat storage was performed with TRNSYS and Excel software. In this comparison, the focus was on the surface parameters of the SCs and volume of the thermal‐storage tank for the coverage of the energy demand for selected building. With this analysis, we would like to show the advantage of the thermochemical storage system, to provide greater coverage of the energy demand for the operation of the building, compared with the seasonal sensible‐heat storage (SSHS). Such a heat‐storage technology could, in the future, be a key contributor to the more environmentally friendly and more sustainable way of delivering energy needs for buildings.  相似文献   
997.
This work aims at augmenting the amount of potable water using MgO and TiO2 in stepped solar still. Experiments were carried out for the climatic conditions of Chennai, India, with two different concentrations of nanofluids inside a stepped basin under three different cases. Results show that there is an improvement in yield of fresh water from stepped solar still by 33.18% and 41.05% using 0.1% and 0.2% volume concentration of TiO2 nanofluid, respectively, whereas the freshwater yield from stepped still with MgO nanofluids improved by 51.7% and 61.89%. Furthermore, the economic analysis revealed that the cost of potable water from the modified solar still reduced from 0.029 to 0.016 $/kg. Similarly, the useful annual energy, yearly cost per kilogram, and annual cost per kilowatt hour are significantly profitable with the use of MgO nanofluid in the stepped basin and found as 512.46 kWh, 0.025 $/kg, and 0.026 $/kWh, respectively. It is also found that the cost of potable water from the modified still significantly increases as the amount of fresh water produced is decreased with increased fabrication cost of the solar still.  相似文献   
998.
Domestic heating systems have long been playing a significant role in China's energy structure. The sustainability of a hybrid solar‐biogas heating system (SBHS) under various feedstock fermentation scenarios was evaluated using emergy analysis. Representative emergy indices such as transformities, emergy yield ratio (EYR), environmental loading ratio (ELR), emergy sustainability index (ESI), ratio of waste treatment (%W), feedback yield ratio (FYR), and emission mitigation intensity (EMI; g/1010 sej) were selected to evaluate the sustainability performance of different feedstock scenarios including cow dung (CD), swine manure (SM), and poultry manure (PM). The results showed that PM fermentation scenario had greater market competitiveness, lower environmental pressure, better sustainability, and self‐organizing ability than the other two options. However, both the emergy efficiency and the CO2 emissions mitigation intensity of PM scenario were worse than that of the SM and CD. Moreover, compared with other biogas systems and traditional agricultural systems, the hybrid SBHS was proved to be a promising mode for the treatment of rural manure waste with favorable economic benefits and environmental sustainability.  相似文献   
999.
Parabolic trough solar collector (PTSC) is one of the most proven technologies for large‐scale solar thermal power generation. Currently, the cost of power generation from PTSC is expensive as compared with conventional power generation. The capital/power generation cost can be reduced by increasing aperture sizes of the collector. However, increase in aperture of the collector leads to higher heat flux on the absorber surface and results in higher thermal gradient. Hence, the analysis of heat distribution from the absorber to heat transfer fluid (HTF) and within the absorber is essential to identify the possibilities of failure of the receiver. In this article, extensive heat transfer analysis (HTA) of the receiver is performed for various aperture diameter of a PTSC using commercially available computational fluid dynamics (CFD) software ANSYS Fluent 19.0. The numerical simulations of the receiver are performed to analyze the temperature distribution around the circumference of the absorber tube as well as along the length of tube, the rate of heat transfer from the absorber tube to the HTF, and heat losses from the receiver for various geometric and operating conditions such as collector aperture diameter, mass flow rate, heat loss coefficient (HLC), HTF, and its inlet temperature. It is observed that temperature gradient around the circumference of the absorber and heat losses from the receiver increases with collector aperture. The temperature gradient around the circumference of the absorber tube wall at 2 m length from the inlet are observed as 11, 37, 48, 74, and 129 K, respectively, for 2.5‐, 5‐, 5.77‐, 7.5‐, and 10‐m aperture diameter of PTSC at mass flow rate of 1.25 kg/s and inlet temperature of 300 K for therminol oil as HTF. To minimize the thermal gradient around the absorber circumference, HTFs with better heat transfer characteristics are explored such as molten salt, liquid sodium, and NaK78. Liquid sodium offers a significant reduction in temperature gradient as compared of other HTFs for all the aperture sizes of the collector. It is found that the temperature gradient around the circumference of the absorber tube wall at a length of 2 m is reduced to 4, 8, 10, 13, and 18 K, respectively, for the above‐mentioned mass flow rate with liquid sodium as HTF. The analyses are also performed for different HTF inlet temperature in order to study the behavior of the receiver. Based on the HTA, it is desired to have larger aperture parabolic trough collector to generate higher temperature from the solar field and reduce the capital cost. To achieve higher temperature and better performance of the receiver, HTF with good thermophysical properties may be preferable to minimize the heat losses and thermal gradient around the circumference of the absorber tube.  相似文献   
1000.
In this study, a conventional steam power plant with two regenerative boilers is considered, and one of its boilers is replaced with parabolic solar dish collectors and storing the produced thermal energy by the phase change material (PCM) in a storage tank. The results show the necessity of the existence of an auxiliary fired‐gas boiler to provide constant load during the whole 24 hours. The performance of the proposed hybridized system is evaluated through energy and exergy analyses. It was demonstrated that substituting solar collectors with one of the boilers marginally lowers the energy efficiency but increases the exergy efficiency of the whole power plant up to 41.76%. Moreover, it is found out that this hybridization decreases the total irreversibility of the power plant in comparison with the base case, from 51.1 to 47.2 MW. The parametric analysis states that raising the mass flow rate of the heat transfer fluid in the solar collectors not only enhances the system performance but also increases the volume of the PCM tank.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号